Towards Realizing Autonomous Driving Based on Distributed Decision Making for Complex Urban Environments

M.Sc. Elif Eryilmaz

on behalf of Prof. Dr. Dr. h.c. Sahin Albayrak
Intelligent vehicle is good ...

But

Intelligent environment is better ...
Digital Mobility – Our vision

Make the road talk to vehicles

- Equip the roads with different sensors
- Enable the vehicles to communicate with each other
- Computation resources for decision making

- Vehicles equipped with different sensors
- Decision logics for assistance system
- Communication mechanisms

DIGINET PS is Open & Urban
DigiNet-PS Aims at Achieving ...

- Open & Distributed Intelligent Solutions for Autonomous Driving in Urban Environment
Open & Distributed Intelligent Solutions for Autonomous Driving in Urban Environment
Open & Distributed Intelligent Solutions for Autonomous Driving in Urban Environment

- Digitized Environment
- Intelligent Vehicle
 - Stereo Kamera
 - Kamer für 360° Vision
 - LIDAR
 - RADAR
 - Application Unit
 - Communication Unit
 - Vehicle Device Provider

© DAI Labor - TU Berlin, Germany
Open & Distributed Intelligent Solutions for Autonomous Driving in Urban Environment
Open & Distributed Intelligent Solutions for Autonomous Driving in Urban Environment
Open & Distributed Intelligent Solutions for Autonomous Driving in Urban Environment

- Digitized Environment
- Intelligent Vehicle
- Intelligent Infrastructure
- Intelligent Cloud & Datacenter
- Intelligent Communication

sensors

- P
- Parking
- Speed
- 5G

Map showing urban infrastructure and vehicle sensors.
DigiNet-PS Impacts on Vehicle Manufacturers

Can we test the impacts of our envisioned evolution path?

Create use cases for the testing?

Many others ...

Driving in a Digitized City

DigiNet-PS Impacts on Vehicle Manufacturers

Can we test the impacts of our envisioned evolution path?

Create use cases for the testing?

Many others ...

Driver Assistance
Vehicle can assist the driver or take control of either vehicle’s speed, its lane position.

Limited self-driving
Automation that takes over all safety-critical functions under certain traffic conditions. Driver is available for occasional control.

Full self-driving under all conditions
Vehicle can operate without human driver.

No Automation
Driver is in complete and sole control of brakes, steering, throttle, and motive power at all times.

Occasional self-driving
Vehicle can take control of both vehicle’s speed and lane position in some situation.

Full self-driving in some conditions
Vehicle is in full control for the entire trip in these conditions such as urban ride sharing.

© DAI Labor - TU Berlin, Germany
Driving in a Digitized City

DigiNet-PS Impacts on Government and Citizens

- Study the impact of autonomous driving on citizens
- Predict major changes to urban landscape
- Study citizens’ perception by realizing various use case scenarios

Government

Citizens

Faced with

Analog cities / Traditional cities

Digital cities / Smart cities

© DAI Labor - TU Berlin, Germany
DigiNet-PS Impacts on entrepreneurs and startups

- Ecosystem
- Business models for future transportation

- Study and inputs for the business model shifts
- Enable the entrance of new entrants in the market

Many others ...
DigiNet-PS Impacts on existing markets

- Study the co-existence models
- Study the new business models

License holder intelligent car

New Markets

Car Sharing

Taxi services
Driving in a Digitized City

DigiNet-PS Route Overview

Complex Roundabouts

3.65 km, three-lane each direction, with road markings
Driving in a Digitized City

DigiNet-PS Route Overview

- Complex parking situations,
- marked and non-marked,
- parallel and slanted parking (about 1000 parking spaces),
- center island parking (about 600 parking spaces),
- separate parking areas

3.65 km, three-lane each direction, with road markings
• 15 traffic control systems with group control for vehicles, bicycles, pedestrians and handicapped, each having a different topology
• Complex traffic situations, rush hour traffic, governmental convoys

3.65 km, three-lane each direction, with road markings

© DAI Labor - TU Berlin, Germany
Driving in a Digitized City

DigiNet-PS Vehicle Solution Suite

Intelligent Decision Making Platform
- Machine learning
- Proactive / Reactive
- Local decisions

Additional functions & sensors
- New sensors
- New functions

Test Vehicles
- Q5
- ...

Digital Mobility – Our vision

DigiNet
Roadside Unit Solution Suite

Sensors
- Parking
- Road condition
- Traffic Analysis
- Weather
- Environmental
- Traffic
- Light

Roadside Units
- Router
- DSCRC
- WiFi/5G
- Microwave

Intelligent Decision Making Platform
- Machine learning
- Proactive / Reactive
- Edge Computing

National Schaufenster for Autonomous Driving
DigiNet-PS Cloud Solution Suite

National Schaufenster for Autonomous Driving

Digital Mobility – Our vision

DigiNet - PS Cloud Solution Suite

Intelligent Decision Making Platform
- Machine learning
- Reactive
- Prediction Engine

Control & Visualization Center
- Facilitates in implementation of use cases
- Visualization of KPIs

Cloud infrastructure
- Hyperflex
- GPUs
- Transport Network
- Aggregation Network

Intelligent Core Network
- SDN, NFV, SON, etc.

Transport Network

Aggregation Network

Intelligent Decision Making Platform

Control & Visualization Center

Cloud infrastructure

Intelligent Core Network

Transport Network

Aggregation Network
- Machine learning
- Proactive decisions
- Integrating stakeholders & huge heterogeneous sensory data

- Edge computing
- Time critical decisions

Digital Mobility

- Plan
- Execute
- Sense

Global View & Control

Local Decision Making

Vehicle DM

Cloud Solution

Wide-range Backhaul

Cellular Communication (LTE)

Short Range Communication

DigiNet-PS Decisions Hierarchy

- Stereo Kamera
- Kameras für 360° Vision
- LIDAR
- RADAR
- Application Unit
- Communication Unit
- Vehicle Device Provider

National Schaufenster for Autonomous Driving

National Schaufenster for Autonomous Driving

DigiNet-PS Decisions Hierarchy
DigiNet-PS Key Outcomes

Sustainability
- Reduce fuel consumption and pollution
 - Avoiding search for parking spaces
 - Avoiding congested routes
 - Avoiding stop & go by choosing suitable speed and lane (green wave)

Safety
- Reduce accidents

Efficiency
- Reduced travel time
Driving in a Digitized City

Infrastructure for Street Digitization
Infrastructure for Street Digitization

Parking Sensors
- Visualizes motion and dwelling time
- Objective measurement of hot spots
- Compiles statistical evaluations
- Adjustable duration and intervals of evaluation

Activity Analyzer

Traffic Analyzer
- Automatic counting of vehicles (passenger cars, trucks, motorbikes)
- Classification into two-wheel, passenger car and bus/truck
- Up to four lanes
- Output in minutes, hours, days, weeks and months

Queue Detection
- Alarm if a defined queue length is reached
- Crowd analysis & crowd density estimation
- Analyzing the speed of the flow
- Estimation of the average waiting time
Driving in a Digitized City

Infrastructure for Street Digitization

Parking Sensors

Traffic Analysis Sensors
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors

- Temperature,
- Relative humidity,
- Precipitation intensity,
- Precipitation type,
- Precipitation quantity,
- Air pressure,
- Wind direction,
- Wind speed
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors

Road Condition Sensors

- Layer thickness of water, snow and ice,
- Surface conditions (dry, damp, wet, snow, ice),
- Friction,
- Road surface temperature
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors
- Road condition Sensors
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors
- Road condition Sensors
- Environmental Sensors

- NO,
- No2
- O3,
- PM1,
- PM2.5,
- PM10
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors
- Road condition Sensors
- Environmental Sensors
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors
- Road condition Sensors
- Environmental Sensors
- Intelligent light sensors

© DAI Labor - TU Berlin, Germany
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors
- Road condition Sensors
- Environmental Sensors
- Intelligent Light Sensors
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors
- Road condition Sensors
- Environmental Sensors
- Intelligent Light Sensors

© DAI Labor - TU Berlin, Germany
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors
- Road condition Sensors
- Environmental Sensors
- Intelligent Light Sensors
- Traffic Light Sensors
Driving in a Digitized City

Infrastructure for Street Digitization

- Parking Sensors
- Traffic Analysis Sensors
- Weather Sensors
- Road condition Sensors
- Environmental Sensors
- Intelligent Light Sensors
- Traffic Light Sensors

Intelligent Communication Infrastructure

1. Access Network Node
2. Backhaul Network Node
3. Transport Network Node

- Connectivity of RSUs
- Backbone design
Driving in a Digitized City

Unique Standpoint of DigiNet-PS

DigiNet-PS will help achieve

- Intelligent Vehicle with human driver like perception
- New Eco-systems & Business Opportunities
- Digital Urban Environment
- Improved Quality of Life

© DAI Labor - TU Berlin, Germany
Get in touch

elif.eryilmaz@dai-labor.de
M.Sc. Elif Eryilmaz

+49 30 - 314 74102