Urban Air Mobility - Trends & Challenges

Dr. Jochen Kaiser
Head of Visionary Aircraft Concepts
The Bauhaus Luftfahrt Approach

>> Founded in November 2005 by
 > The Bavarian Ministry of Economic Affairs, Infrastructure, Transport and Technology
 > Airbus
 > IABG
 > Liebherr Aerospace
 > MTU Aero Engines

>> A non-profit research institution with long-term time horizon
 > Strengthening the cooperation between industry, science and politics
 > Developing new approaches for the future of aviation with a high level of technical creativity
 > Optimizing through a holistic approach in science, economics, engineering and design
 > Added value due to interdisciplinary teams
 • Aeronautical engineering
 • Economy & ecology
 • Geography
 • Informatics & knowledge management
 • Materials science
 • Physics & chemistry
 • Social sciences

>> Going “New Ways“ for the mobility of tomorrow
The Idea of Aviation in Urban Mobility is not new.....
...and existed and still exists....
Mobility within and between cities

Year 1970
30% urban : 70% rural

Year 2014
54% urban : 46% rural

Year 2030
60% urban : 40% rural

Source: ESA World Urbanization prospects 2014
Commuting Times in Large Metropolitan Areas
Data according to TomTom

<table>
<thead>
<tr>
<th>City Name</th>
<th>Metropolitan size</th>
<th>Average Extra Time</th>
<th>Extra Time at Morning Peak</th>
<th>Extra Time at Evening Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico City</td>
<td>21 Mio.</td>
<td>58%</td>
<td>+63%</td>
<td>+81%</td>
</tr>
<tr>
<td>Jakarta</td>
<td>30 Mio.</td>
<td>58%</td>
<td>+63%</td>
<td>+88%</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>14 Mio.</td>
<td>47%</td>
<td>+63%</td>
<td>+88%</td>
</tr>
<tr>
<td>Santiago de Chile</td>
<td>7 Mio.</td>
<td>43%</td>
<td>+73%</td>
<td>+96%</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>15 Mio.</td>
<td>45%</td>
<td>+101%</td>
<td>+84%</td>
</tr>
<tr>
<td>New York</td>
<td>24 Mio.</td>
<td>35%</td>
<td>+52%</td>
<td>+62%</td>
</tr>
<tr>
<td>Beijing</td>
<td>25 Mio.</td>
<td>46%</td>
<td>+95%</td>
<td>+63%</td>
</tr>
<tr>
<td>Istanbul</td>
<td>15 Mio.</td>
<td>49%</td>
<td>+71%</td>
<td>+91%</td>
</tr>
<tr>
<td>Moscow</td>
<td>17 Mio.</td>
<td>44%</td>
<td>+94%</td>
<td>+81%</td>
</tr>
<tr>
<td>London</td>
<td>17 Mio.</td>
<td>40%</td>
<td>+91%</td>
<td>+86%</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>14 Mio.</td>
<td>47%</td>
<td>+63%</td>
<td>+88%</td>
</tr>
<tr>
<td>Sydney</td>
<td>5 Mio.</td>
<td>39%</td>
<td>+75%</td>
<td>+87%</td>
</tr>
<tr>
<td>New York</td>
<td>24 Mio.</td>
<td>46%</td>
<td>+95%</td>
<td>+63%</td>
</tr>
<tr>
<td>Santiago de Chile</td>
<td>7 Mio.</td>
<td>43%</td>
<td>+73%</td>
<td>+96%</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>15 Mio.</td>
<td>45%</td>
<td>+101%</td>
<td>+84%</td>
</tr>
<tr>
<td>Mexico City</td>
<td>21 Mio.</td>
<td>58%</td>
<td>+63%</td>
<td>+81%</td>
</tr>
</tbody>
</table>

22nd International Forum on Advanced Microsystems for Automotive Applications (AMAA 2018)
12.09.2018
UAM Initiatives worldwide

- Conventional and Short TOL
 - Fixed-Wing
 - Autogyro
 - Rotor-based
 - Fan-based

- Extremely Short or Vertical TOL
 - Tilt-Wing/Prop.
 - Hybrid-Wing
 - Tailsitter

Percentage of Programs:
- Rotor-based: 34%
- Fan-based: 8%
- Tilt-Wing/Prop.: 29%
- Hybrid-Wing: 26%
- Tailsitter: 3%

Energy Source:
- Electric: 31
- Hybrid-Electric: 14
- Fuel: 9
 - Unknown: 3
 - 90% Fuel Cell: 2

Concept Types/Purpose:
- Urban Air Mobility: 33
 - Inter-City: 11
 - Unknown: 11

22nd International Forum on Advanced Microsystems for Automotive Applications (AMAA 2018)
1. Rotary-Wing & Fan-based Concepts

2. Tilt-/ Hybrid-Wing Configurations

3. Fixed-Wing „Flying Cars“
Hybrid-Electric Power Train

Main Differences between Automotive & Aviation Applications:

>> Mission Profile

> Recuperation is part of energy management

> Constant energy demand over a large part of the mission
Electric Aircraft History & Future Concepts

MB-E1 on October 21, 1973

--- Battery powered
----- Fuel cell-battery hybrid
------ Engine-battery hybrid

List is not exhaustive

--- Electric

- MB-E1
- Antares 20E
- Silent 2
- AE-1 Silent

Fuel cell-battery hybrid

- HK36 FCD
- Flight Design Hybrid Motor
- Silent 2 Electro
- Electric
- Antares DLR-H2
- Electric Viva
- SkySpark
- Waiex
- Yuneeq eX30
- Airbus E-Fan 2.0
- ENFICA-FC
- Taurus
- Alatus ME
- eGenius
- eViva
- Electraflyer-ULS
- Evinta EVO
- Taurus G4
- FlyNano
- ASS 71
- DA36 E-Star

Engine-battery hybrid

- NASA "LEAPTech"
- Joby Aviation "Joby S2"
- Volocopter 2X
- Airbus E-Fan 2.0
- Aurora eVTOL
- Bauhaus Luftfahrt "Ce-Liner"

Source: NASA.gov
Source: Jobyaviation.com
Source: Airbusgroup.com
Source: Bauhaus-Luftfahrt.net

© Flight International
Urban Air Mobility Infrastructure Concepts
(Visualisations taken from NASA, Uber, Volocopter, Lilium)
Integration of UAM into urban mobility

Sioux Falls MATSim Baseline Scenario: UAM covering 4% of trips
What are the implications on cities?

Example: Los Angeles

- Population
 - City: approx. 4 Million
 - Metropolitan Area: approx. 13 Million
- LA International Airport
 - Aircraft Operations per day: around 2000 A/C
What are the implications on cities?

Assumption:

- Average number of rides per day
 - 3 by every resident

- PAV share on transport capacity similar to taxi:
 - 1% of passenger traffic

- PAV flights / hour
 - 5,000 in LA city
 - 16,000 in LA metropolitan area
What are the implications on cities?

Automation / Autonomy
- Pilotless Operation
- Air Traffic Management
- Databases

Infrastructure
- PAV-Ports
- Power Supply
- Communication

Reliability of Service
- Capacity
- Time for Waiting & Travel
- Interoperability with other Modes of Transportation

Safety & Regulations

Acceptance
Future Prospects of Aviation in Urban Mobility

>> Multiple aspects are still being discussed:

- Vehicle characteristics regarding take-off and landing capabilities, travel speed, capacity,...
- Operational concepts as on-demand vs. scheduled, commercial vehicles vs. personal vehicles, inter- vs. intra-city,...
- Possible market structures, ownership models and business models
- Level of system costs
- Infrastructure set-up
- Air traffic management, routing and scheduling, UTM/ATM integration
- Regulatory framework

>> What we know today...

- High level of activities on research and industry side with focus on vehicle demonstrator and ATM/UTM concepts
- Commercial, piloted operations targeted in 2023 onwards
- Full-scale, autonomous operations decades away
- Operation from (heli)pad type area
- Various studies show an UAM market share of <10%, more around 4-6%
Contact

>> Bauhaus Luftfahrt e.V.
 Willy-Messerschmitt-Strasse 1
 85521 Ottobrunn
 Germany

>> Tel.: +49 (0) 89 3 07 48 49 - 47
 Fax: +49 (0) 89 3 07 48 49 - 20

 jochen.kaiser@bauhaus-luftfahrt.net

>> http://www.bauhaus-luftfahrt.net