Battery Main Switch

Infineon Technologies AG
ATV SYS SE
Werner Roessler
Agenda

- System Overview and Requirements
- Relay = ideal Component?
- Semiconductor Selection
- Reference Design development
- Precharging
- Conclusion
Agenda

- System Overview and Requirements
- Relay = ideal Component?
- Semiconductor Selection
- Reference Design development
- Precharging
- Conclusion
Battery System

+200V

-200V

Power

12V

CAN Bus

Communi -cation

Main Switch

Block 10
Block 8
Block 9
Block 8
Block 7
Block 6
Block 5
Block 4
Block 3
Block 2
Block 1

Master

SPI to 2 wire

Current Sensor

Copyright © Infineon Technologies AG 2014. All rights reserved.
Main Switch Requirements

- Safe Disconnection

- Voltage: 200 – 500V

- Charge Current:
 - Continuous 100A
 - Peak (10s): 250A

- Load Current:
 - Continuous 150A
 - Peak (10s) 350A
Agenda

- System Overview and Requirements
- Relay = ideal Component?
- Semiconductor Selection
- Reference Design development
- Precharging
- Conclusion
Relay Arcing

Welded Contacts after disconnection with high current

No Coil current!
Relay – a real ideal switch?

- Contact aging after switch-off (210V / 205A)
 - $R_{on} = \text{really } 0\Omega$?
- Condensation of vaporized metal parts at the wall
 - Isolation resistance really ∞?

Source: Panasonic
Relay or Semiconductor-What is better?

<table>
<thead>
<tr>
<th>Feature</th>
<th>Relay</th>
<th>Semiconductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime</td>
<td>![Relay]</td>
<td>![Semiconductor]</td>
</tr>
<tr>
<td>Reaction time</td>
<td>![Relay]</td>
<td>![Semiconductor]</td>
</tr>
<tr>
<td>Efficiency</td>
<td>![Relay]</td>
<td>![Semiconductor]</td>
</tr>
<tr>
<td>Module weight</td>
<td>![Relay]</td>
<td>![Semiconductor]</td>
</tr>
<tr>
<td>Module height</td>
<td>![Relay]</td>
<td>![Semiconductor]</td>
</tr>
<tr>
<td>Component Cost</td>
<td>![Relay]</td>
<td>![Semiconductor]</td>
</tr>
<tr>
<td>System Cost</td>
<td>![Relay]</td>
<td>![Semiconductor]</td>
</tr>
<tr>
<td>Experience</td>
<td>![Relay]</td>
<td>![Semiconductor]</td>
</tr>
<tr>
<td>Vibration robustness</td>
<td>![Relay]</td>
<td>![Semiconductor]</td>
</tr>
<tr>
<td>Noise</td>
<td>![Relay]</td>
<td>![Semiconductor]</td>
</tr>
</tbody>
</table>
Main Switch
Current rise after Short Circuit

Current [A] vs Time [ms]

- **Fuse blows**
- **Reaction time with Semiconductor**
- **Reaction time with Relay**
Agenda

- System Overview and Requirements
- Relay = ideal Component?
- Semiconductor Selection
- Reference Design development
- Precharging
- Conclusion
Switching Elements
Voltage Drop over Current

![Graph showing voltage drop over current for different elements: IGBT, Diode, IGBT+Diode, 1Mosfet, 4Mosfet, Relay, and Relays old?](graph)

- **Parallel**: Indicates the relationship between current and voltage drop for parallel elements.
- **Aging**: Shows the impact of aging on the voltage drop.

Axes:
- **Vertical Axis**: Voltage Drop [V]
- **Horizontal Axis**: Current [A]

Note: The graph compares the voltage drop for different switching elements at varying currents, highlighting the contrast between new and old relays.
MosFET Evolution
Better Ron Resistance

- Improvement factor 15 within 20 years
- Assumption: available silicon chip technology in the actual TO247 package device

![Graph showing the reduction in Ron over time]

- 6400W @150A
- 427W @150A
- Today
Power Dissipation

- Configuration 8P/3S (8 MosFets parallel and 3 in series)
- Temperature: 25°C
Agenda

- System Overview and Requirements
- Relay = ideal Component?
- Semiconductor Selection
- Reference Design development
- Precharging
- Conclusion
Block Circuit

- **S1**
 - Voltage disconnect

- **S2**
 - Voltage disconnect (redundant)

- **S3**
 - Prevent from overcharge (only in charger fail mode)

- **D1**
 - Free Wheel diode for emergency switch-off

- **C1**
 - Input Buffer
Reference Design
Overload Handling

- Normal Operation (<400A):
 - 8 equal independent paths via Hall sensor
 - Check of current distribution possible
 - Board Temperature Measurement

- Overload Condition:
 - Fast Overcurrent in Hall Sensors
 - 3µs delay
 - 55A Threshold each > 440A in total
 - Interrupt in µC
 - Hardware Reset of Driver
 - Voltage drop over RDSon
 - Hardware switch-off
 - Threshold:
 - 650A @ 25°C
 - 400A @ 120°C
Agenda

- System Overview and Requirements
- Relay = ideal Component?
- Semiconductor Selection
- Reference Design development
- Precharging
- Conclusion
Precharge Function

- **Task:** Charge of empty DC link Capacitor

- **Conventional:** Relay + Resistor

- **Solid State:** uses Existing Circuitry + Software
- Detection of
 - Short Circuit
 - Open Load

- Measurement of
 - Load current
 - Capacitance value of DC link
Agenda

- System Overview and Requirements
- Relay = ideal Component?
- Semiconductor Selection
- Reference Design development
- Precharging
- Conclusion
Past: Two Relays mandatory as safety part; No semiconductors allowed

Actual proposal: One Relay for final interruption necessary

Future: Complete solid state solution under discussion
Savings in the System

- Mechanical Parameters
 - Size
 - Weight

- Parts
 - Relays
 - Fuse
 - Precharge Circuit

- Wiring diameter
- Noise Cancellation
- Replacement of Switchbox (and Batteries?) after Crash
ENERGY EFFICIENCY
MOBILITY
SECURITY

Innovative semiconductor solutions for energy efficiency, mobility and security.