Integration and Test of the COSIVU SiC BJT Based Inverter

S. Nord, J. Ottosson, Volvo Group Trucks Technology, Advanced Technology and Research
F. Hilpert, Fraunhofer IISB

19th International Forum on Advanced Microsystems for Automotive Applications
Berlin, 7-8 July 2015
Agenda

- Introduction
- COSIVU Inverter Integration
- COSIVU Inverter System
- Measurement Setup
- Initial Test Results
Introduction
The COSIVU project

- The EU-funded FP7 project COSIVU aims at a new system architecture for drive-trains by development of a smart, compact and durable single-wheel drive unit with:
 - integrated electric motor,
 - compact transmission,
 - full silicon carbide (SiC) power electronics,
 - and an advanced ultra-compact cooling solution.
- Project Started 2012-10-01, and ends 2015-09-30
COSIVU Inverter Integration
External connections

- CAN & 24V supply
- High voltage DC supply
- Coolant in & out
COSIVU Inverter Integration

„Plug & Play“

- EM Sensor connectors
- Leakage-free coolant connector to EM
- Coolant outlet from EM
- Pluggable AC connectors
COSIVU Inverter System
Modular Inverter Concept

3 modular „Inverter Building Blocks“ (IBB) in serial connection

Coolant inlet

Coolant outlet

24V supply & CAN communication

24V stabilizer

Inverter Controller Module (ICM)
Measurement Setup
Back-to-back test rig
Measurement Setup
Operating Points

- Initial tests done with in-house developed inverter (IGBT) – used as reference
- 11 different operating points ran as a cycle both as motor and generator
- The same cycle now also done with the COSIVU inverter (SiC-BJT)
- Inverter losses compared
Measurement Setup
Test Rig
Initial Test Results

Inverter losses [W] - REFERENCE (IGBT)

Inverter losses [W] - COSIVU (SiC-BJT)
Initial Test Results

![Graph showing initial test results comparing REFERENCE (IGBT) and COSIVU (SiC-BJT).]

- **Operating point**
- **P_{loss} [W]**
- **ΔP_{loss} [%]**
Thank you!